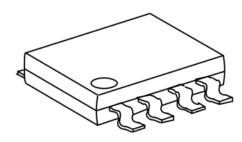


### DESCRIPTION

SP3313 has an optimum input voltage, step-down converter that operates in either CV (Constant Output Voltage) mode or CC (Constant Output Current) mode. The maximum input voltage is up to 36V and the operation input voltage from 7.5V to 32V.

MOSFET, what build in  $35m\Omega$  High-Side and  $25m\Omega$  Low-Side, could deliver up to 3.5A of continuous output current and the output current accurate to within  $\pm 7\%$ .

No external compensation component requirement. The line compensation and the constant current can be set by an external resistance.

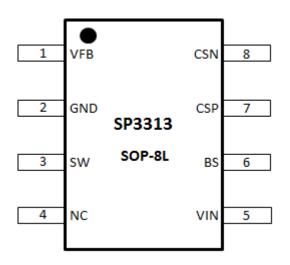

In conclusion, SP3313 is a full function and high performance, high reliability buck DC-DC converter.

### FEATURES

- > 100% Duty Cycle Car Charge Scheme
- > Build in High-Side and Low-Side MOSFET
- Max Output Current: 3.5A
- Adjustable Output Voltage, V<sub>FB</sub>=1.0V
- Excellent Constant Current Accuracy: ±7%
- Constant Voltage Accuracy: ±2%
- Jitter Function
- Efficiency: Up to 95%
- > Adjustable Line Compensation
- Short Circuit Protection
- > Over Voltage Protection
- > Thermal shutdown Protection
- Under Voltage Lock Output
- > Available in SOP-8L Package

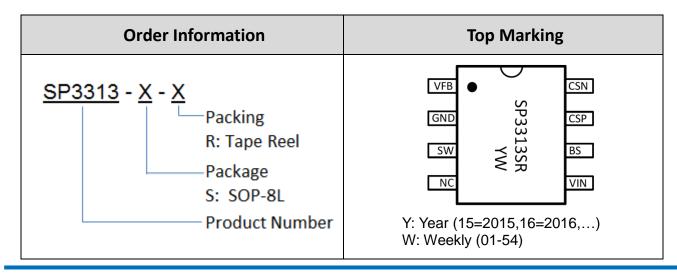
# APPLICATIONS

- > Car Charger
- Wall Charger
- Power Strip/Hub
- > Portable charger device




SOP-8L

- Car DVD
- Black Box
- Industry Application
- > Other




# ■ TYPICAL APPLICATION



| PIN | NAME | DESCRIPTION                                                                                                            |  |  |
|-----|------|------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | VFB  | Feed Back Of Output Voltage                                                                                            |  |  |
| 2   | GND  | Ground                                                                                                                 |  |  |
| 3   | SW   | Positive Of Current Sense Power Switching Output to External Inductor                                                  |  |  |
| 4   | NC   | NC                                                                                                                     |  |  |
| 5   | VIN  | Power Supply Input. Bypass this pin with a $2.2\mu F$ ceramic capacitor to GND, placed as close to the IC as possible. |  |  |
| 6   | BS   | Power to the internal high-side MOSFET gate driver. Connect a 22~100nF capacitor from BS pin to VIN pin                |  |  |
| 7   | CSP  | Positive Of Current Sense                                                                                              |  |  |
| 8   | CSN  | Negative Of Current Sense                                                                                              |  |  |

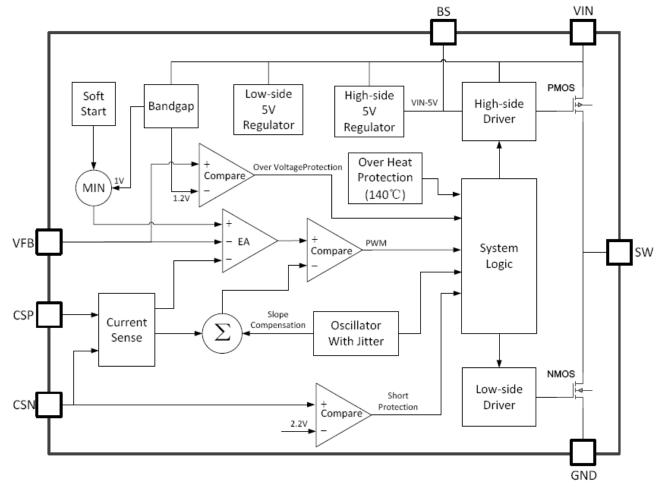
### ORDER/MARKING INFORMATION



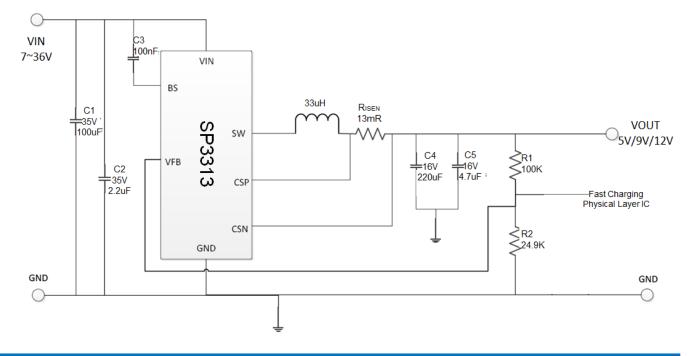


# ■ ABSOLUTE MAXIMUM RATINGS (at T<sub>A</sub> = 25°C)

| Parameter                                   | Symbol          | Rating     | Units |
|---------------------------------------------|-----------------|------------|-------|
| V <sub>IN</sub> to GND                      |                 | -0.3 to 36 | V     |
| SW to GND                                   |                 | -0.3 to 32 | V     |
| BS to GND                                   |                 | -0.3 to 36 | V     |
| CSP, CSN to GND                             |                 | -0.3 to 25 | V     |
| V <sub>FB</sub> to GND                      |                 | -0.3 to 6  | V     |
| Junction to Ambient Thermal Resistance      |                 | 105        | °C/W  |
| Operating Junction Temperature              |                 | -40 to 150 | °C    |
| Storage Junction Temperature                |                 | -55 to 150 | °C    |
| Lead Temperature (Soldering 10 sec.)        |                 | 300        | °C    |
| Thermal Resistance from Junction to case    | θ <sub>JC</sub> | 15         | °C/W  |
| Thermal Resistance from Junction to ambient | θ <sub>JA</sub> | 40         | °C/W  |
| ESD (HBM)                                   |                 | >2000      | V     |

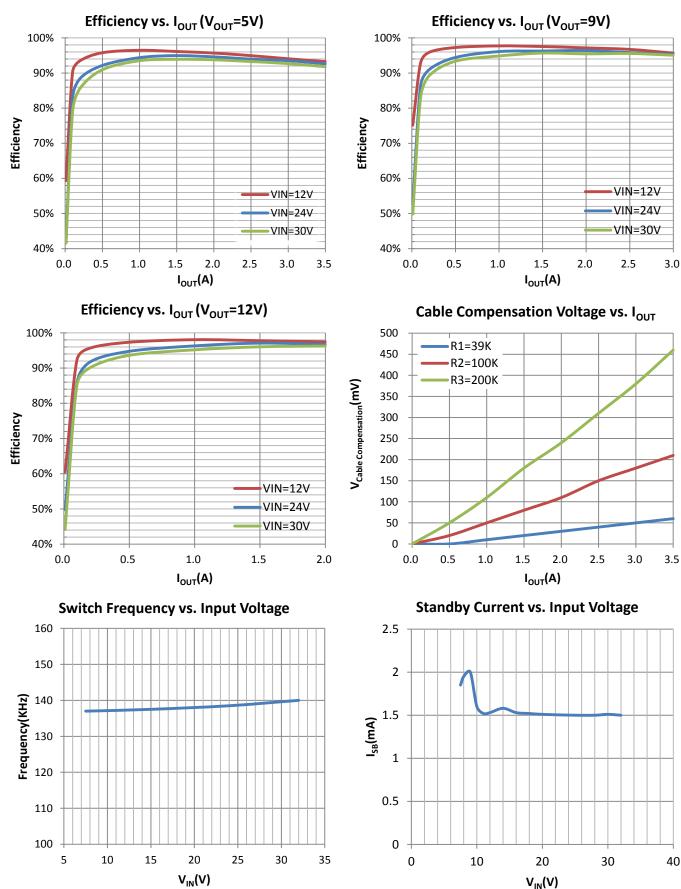

**Note**: Exceed these limits to damage to the device. Exposure absolute maximum rating conditions may affect device reliability.

### ■ ELECTRICAL CHARACTERISTICS(V<sub>IN</sub>=12V, T<sub>A</sub> = 25°C, unless otherwise stated)


| Parameter                                | Symbol                  | Conditions                                                                           | Min  | Тур | Max  | Units |
|------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|------|-----|------|-------|
| Input Voltage                            | V <sub>IN</sub>         |                                                                                      | 7    | -   | 36   | V     |
| Input OVP Threshold                      | V <sub>OVP-VIN</sub>    |                                                                                      | 31   | 32  | 33   | V     |
| UVLO Voltage                             | V <sub>UVLO</sub>       |                                                                                      | 7    | 7.5 | 8    | V     |
| UVLO Hysteresis                          |                         |                                                                                      | 0.3  | 0.5 | 0.8  | V     |
| Quiescent Current                        | Ι <sub>CCQ</sub>        | V <sub>FB</sub> =1.5V, force driver off.                                             | -    | 1.5 | -    | mA    |
| Standby Current                          | I <sub>SB</sub>         | No Load                                                                              | -    | 1.6 | 2    | mA    |
| Reference Voltage Of VFB                 | V <sub>FB</sub>         |                                                                                      | 0.98 | 1   | 1.02 | V     |
| Output OVP detect Voltage                | V <sub>OVP</sub>        | Internal define                                                                      | -    | 1.2 | -    | V     |
| Switching Frequency                      | F <sub>sw</sub>         | I <sub>OUT</sub> =1A                                                                 | 120  | 135 | 155  | KHz   |
| Maximum Duty Cycle                       | D <sub>MAX</sub>        |                                                                                      |      | 100 | -    | %     |
| Minimum On-Time                          |                         |                                                                                      | -    | 250 | -    | ns    |
| Reference Voltage Of<br>Constant Current | Reference<br>Of CSP-CSN | 0.4V <vfb<0.95v< td=""><td>46.5</td><td>50</td><td>53.5</td><td>mV</td></vfb<0.95v<> | 46.5 | 50  | 53.5 | mV    |
| V <sub>OUT</sub> -Short                  | V <sub>CSN</sub>        |                                                                                      | 2.2  | 2.4 | 2.6  | V     |
|                                          | High side               | I <sub>OUT</sub> =1A                                                                 | 30   | 35  | 40   | mΩ    |
| RDS <sub>on</sub> Of Power MOS           | Low side                | I <sub>OUT</sub> =1A                                                                 | 22   | 25  | 30   | mΩ    |
| Thermal shutdown Temp                    | T <sub>SD</sub>         |                                                                                      | -    | 140 | -    | °C    |
| Thermal Shutdown Hysteresis              | Т <sub>SH</sub>         |                                                                                      | -    | 30  | -    | °C    |



BLOCK DIAGRAM




# TYPICAL APPLICATION CIRCUIT





# TYPICAL PERFORMANCE CHARACTERISTICS

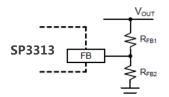




# FUNCTIONAL DESCRIPTION

#### Input Under Voltage Protection

SP3313 provides an input voltage up to 36V and operates from an input voltage range of 7.5V to 32V. If  $V_{IN}$  drops below 7V, the UVLO circuit inhibits switching. Once  $V_{IN}$  rises above 7.5V, the UVLO clears, and the soft-start sequence activates.


#### Input Over Voltage Protection

If  $V_{IN}$  rises above 32V, the UVLO circuit inhibits switching. SP3313 will not be damaged until the voltage exceeds 36V. Once  $V_{IN}$  drops below 30V, the UVLO clears, and the soft-start sequence activates.

#### Soft-start

SP3313 has an internal soft-start circuitry to reduce supply inrush current during startup conditions. When the device exits under-voltage lockout (UVLO), shutdown mode, or restarts following a thermal-overload event, the soft-start circuitry slowly ramps up current available after 300us.

#### **Constant Voltage Output**



SP3313 presets the  $V_{FB}$  voltage to 1V. The Output Voltage can be set by extra resistance.

$$V_{\text{OUT}} = V_{\text{FB}} \times (\frac{R_{\text{FB1}}}{R_{\text{FB2}}} + 1)$$

#### **Output Over Voltage Protection**

Once  $V_{FB}$  rises above 1.2V, SP3313 shuts down to avoid damage caused by abnormal use of electrical equipment.

#### **Constant Current Output**

SP3313 senses the current by sampling the voltage difference between the CSP and the CSN, and adjusts the output current to the default value by the loop.

$$I_{OUTPUT} = \frac{50mV}{R_{ISEN}}$$

Constant current operates normally when CSN is higher than 2.4V. When CSN is below 2.2V causing by overload, SP3313 will enter short circuit protection mode.

#### Short Circuit Protection

When CSN drops below 2.2V since too heavy load, SP3313 will enter short circuit protection function, and the system will enter hit-cup mode, and frequency drop to 40KHz per cycle and stop switching for 300mS.

#### Line Compensation

When users use different cables, it will produce different voltage drop, the users can set their own



cable compensation voltage according to the need:

 $V_{\text{Cable Compensation}} = 1.6 \mu A \times R1 \times \frac{V_{\text{CSP}} - V_{\text{CSN}}}{50 mV}$ 

#### Thermal Shutdown

Thermal-overload protection limits total power dissipation in the device. When the junction temperature exceeds  $T_J$ = +150°C, a thermal sensor forces the device into shutdown, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by 25°C, resulting in a pulsed output during continuous overload conditions. Following a thermal-shutdown condition, the soft-start sequence begins.

# APPLICATION GUIDELINES

#### Input capacitance selection

Input capacitance selection pressure 50V, the total capacity of 40  $\mu$ F ceramic capacitor, of course, if considering the cost factor, can also choose a more than 50V voltage, capacity of more than 100  $\mu$ F electrolytic capacitor, parallel a 50V voltage, capacity of 2.2 $\mu$ F ceramic capacitors.

The location of the input capacitance, try to close to the chip VIN PIN position, if it is electrolytic capacitors and ceramic capacitors in parallel, ceramic capacitor is more close to the chip.

### Inductance selection

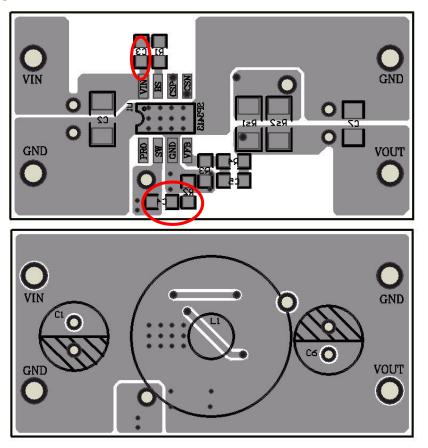
SP3313 selection are amount at  $22\mu$ H~51 $\mu$ H inductance, if the demand is higher, the output ripple is advised to choose a larger inductance sense of values, such as  $33\mu$ H or  $47\mu$ H.

Require inductor saturation current must be not less than 1.5 times of the preset constant current value.

#### **Output capacitance selection**

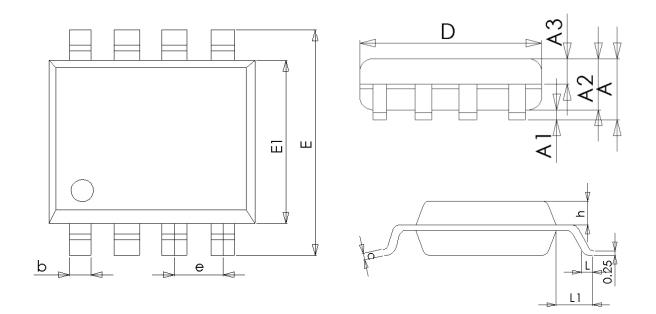
Generally recommended to use a 220  $\mu$ F electrolytic capacitor and a 4.7  $\mu$ F ceramic capacitors in parallel as the output capacitance, the demand is higher, if the output ripple is proposed to 4.7  $\mu$ F ceramic capacitor replacement for one or two ESR lower 22  $\mu$ F ceramic capacitors, ceramic capacitors capacitance value, the greater the output ripple is smaller.

#### **BS** capacitance selection


BS and select let VIN proposal in 22nF~100nF ceramic capacitor, withstand voltage value of not less than 50V.



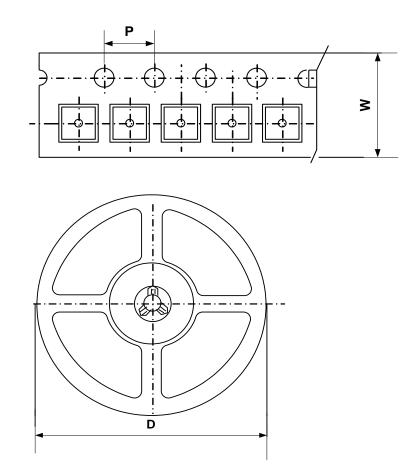
### EMI/EMC


SW reserved RC circuit, resistance to choose 4.7R, 2.2nF capacitance advice; If the application version enough volume, can be reserved at input end type  $\pi$  circuit. SW pin reserved RC circuit of R2 4.7 $\Omega$  and C4 1nF; BS pin reserved R1 5.1 $\Omega$  string C3 100nF; Being enough, if the PCB can be reserved in the input circuit  $\pi$  type.(The following figure)

### Layout design reference






# PACKAGE INFORMATION



| Symbol | Dimensions In Millimeters |      |      |  |  |
|--------|---------------------------|------|------|--|--|
| Symbol | Min                       | NOM  | Max  |  |  |
| A      |                           |      | 1.65 |  |  |
| A1     | 0.05                      |      | 0.15 |  |  |
| A2     | 1.30                      | 1.40 | 1.50 |  |  |
| A3     | 0.60                      | 0.65 | 0.70 |  |  |
| D      | 4.70                      | 4.90 | 5.10 |  |  |
| E      | 5.80                      | 6.00 | 6.20 |  |  |
| E1     | 3.70                      | 3.90 | 4.10 |  |  |
| е      | 1.27BSC                   |      |      |  |  |
| h      | 0.25                      |      | 0.50 |  |  |
| L      | 0.50                      | 0.60 | 0.80 |  |  |
| L1     | 1.05BSC                   |      |      |  |  |



### ■ TAPE AND REEL INFORMATION



| Package Type | Carrier Width (W) | Pitch (P)  | Reel Size(D) | Packing Minimum |
|--------------|-------------------|------------|--------------|-----------------|
| SOP-8L       | 12.0±0.1 mm       | 8.0±0.1 mm | 330±1 mm     | 4000pcs         |

Note: Carrier Tape Dimension, Reel Size and Packing Minimum